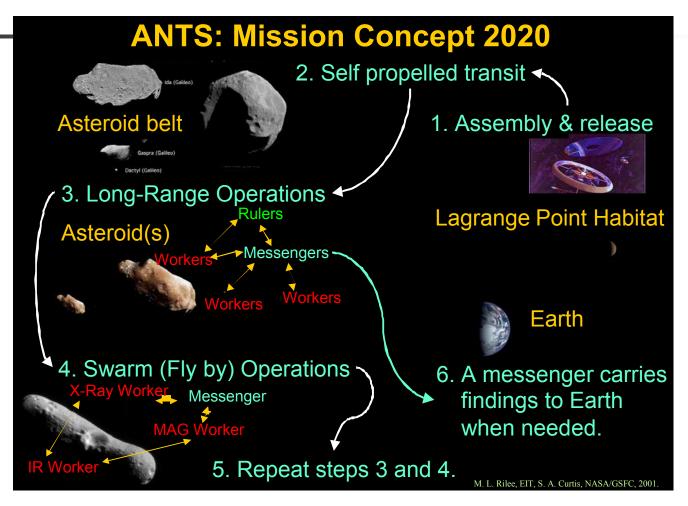


Formal Approaches for Swarm Technology (FAST)

Code 588 / Walt Truszkowski



Formal Approaches to Swarm Technology (FAST)

The objective is to formally model a swarm system to be able to test for completeness and correctness of system behaviors

 The Autonomous Nano Technology Swarm (ANTS) concept was selected as domain of investigation

Focus of Formal Modeling

Difficulties in Formal Modeling of Swarms

- Emergent properties that may not be known
- Highly distributed and parallel
- Large number of interacting entities
- Worse than exponential growth in interactions
- Intelligent entities (capabilities increase over time)
- Total or near total autonomy
- Very little experience in verification and validation of swarm-based systems

Formal Models Considered

- CSP Communicating Sequential Processes
- X-Machines
- WSCCS Weighted Synchronous Calculus of Communicating Systems
- Unity logic

- Communicating Sequential Processes
 - Developed by C.A.R. Hoare
 - Process Algebra
 - Processes are recursively defined as an event followed by a process
 - Use channels for processes to communicate
 - Channels are guarded by events
 - Properties of CSP specifications can be proven correct

FAST - CSP

- Strengths
 - Specifying inter-process protocols
 - Identifying race conditions
 - Easily translated into model checking language
- Weaknesses
 - No mechanism for analyzing emergent behavior

FAST - X-Machines

- Developed by Samuel Eilenberg
- Based on Finite State Machines
- Have an internal memory state
- Transitions are functions:
 - Input x Memory → Output x Memory

FAST – X-Machines

- Strengths
 - State-based system with memory
 - Executable
- Weaknesses
 - No robust means for reasoning about or predicting behaviors beyond standard propositional logic

FAST - WSCCS

- Weighted Synchronous Calculus of Communicating Systems
 - Developed by Chris Tofts
 - Used to model social insects
 - Uses a state-based approach with frequencies and priorities for transitions
 - Frequencies and priorities can give you the probability of taking an action

FAST - WSCCS

- Strengths
 - Process algebra strengths
 - Specifies priorities and probabilities of actions
 - Rules for predicting behavior
- Weaknesses
 - Inability to track and model goals and other aspects of the spacecraft

FAST - Unity Logic

- Developed by Chandy and Misra
- Syntax similar to Propositional Logic
- Reason about predicates and states
- Very good for concurrent systems

FAST – Unity Logic

- Strengths
 - Strengths of logic-based systems
 - A method for reasoning about predicates and the states they imply
 - A method for defining specific mathematical and statistical calculations to be performed
- Weaknesses
 - Not rich enough for reasoning about emergent behavior

Formal Models – Next Steps

 Blending of methods seems to be the best approach for specifying swarm-based systems

 Blending of priority and probability aspects of WSCCS with memory and transition function aspects of X-Machines as well as logic from Unity Logic is a
Formal Approaches Dossibility and is currently being studied

(FAST) Code 588 / Walt Truszkowski